Math, asked by deepali26gamer, 13 hours ago

prove that Sin 5x =Sinx -20 Sin³x+16⁵x​

Answers

Answered by mathdude500
6

Appropriate Question :-

Prove that

\rm \:sin5x  =  \:5sinx -  {20sin}^{3}x+  {16sin}^{5}x

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:sin5x

can be rewritten as

\rm \:  =  \:sin(3x + 2x)

We know,

 \boxed{ \bf{ \: sin(x + y) = sinxcosy +siny cosx}}

So, using this, we get

\rm \:  =  \:sin3xcos2x + sin2xcos3x

We know,

 \boxed{ \bf{ \: sin3x = 3sinx -  {4sin}^{3}x}}

 \boxed{ \bf{ \: cos2x = 1 -  {2sin}^{2}x}}

 \boxed{ \bf{ \: sin2x = 2sinxcosx}}

 \boxed{ \bf{ \: cos3x =  {4cos}^{3}x - 3cosx}}

So, using these Identities, we get

\rm \:  =[3sinx -  {4sin}^{3}x](1 -  {2sin}^{2}x) + (2sinxcosx)[ {4cos}^{3}x - 3cosx]

\rm \:  =[3sinx -  {4sin}^{3}x](1 -  {2sin}^{2}x) + 2sinxcos^{2} x[ {4cos}^{2}x - 3]

\rm \:  =[3sinx -  {4sin}^{3}x](1 -  {2sin}^{2}x) + 2sinx[1 - sin^{2} x][ 4(1 - {sin}^{2}x) - 3]

\rm \:  =[3sinx -  {4sin}^{3}x](1 -  {2sin}^{2}x) + 2sinx[1 - sin^{2} x][ 4 - 4{sin}^{2}x - 3]

\rm \:  =[3sinx -  {4sin}^{3}x](1 -  {2sin}^{2}x) + 2sinx[1 - sin^{2} x][ 1 - 4{sin}^{2}x]

\rm \:  =  \:3sinx -  {6sin}^{3}x -  {4sin}^{3}x +  {8sin}^{5}x + (2sinx - 2 {sin}^{3}x)(1 - 4 {sin}^{2}x)

\rm \:  =  \:3sinx -  {10sin}^{3}x+  {8sin}^{5}x +2sinx -  {8sin}^{3}x -  {2sin}^{3}x +  {8sin}^{5}x

\rm \:  =  \:5sinx -  {20sin}^{3}x+  {16sin}^{5}x

Hence,

\rm \: \boxed{ \bf{ \: sin5x  =  \:5sinx -  {20sin}^{3}x+  {16sin}^{5}x }}

Additional Information :-

 \boxed{ \bf{ \: sin(x - y) = sinxcosy - sinycosx}}

 \boxed{ \bf{ \: cos(x + y) = cosxcosy - sinxsiny}}

 \boxed{ \bf{ \: cos(x  -  y) = cosxcosy  +  sinxsiny}}

 \boxed{ \bf{ \: cos2x =  {2cos}^{2}x - 1}}

 \boxed{ \bf{ \: sin2x =  \frac{2tanx}{1 +  {tan}^{2} x}}}

 \boxed{ \bf{ \: tan2x =  \frac{2tanx}{1  -   {tan}^{2} x}}}

 \boxed{ \bf{ \: cos2x =  \frac{1 - tan {}^{2} x}{1   +  {tan}^{2} x}}}

Similar questions