Prove that sin^6 theta + cos^6 theta+ 3 sin^2 theta cos^2 theta = 1.
Answers
Answered by
1
Answer:
sin²θ + cos²θ = 1
Therefore (sin²θ + cos²θ)³ = 1
or
(sin²θ)³ + (cos²θ)³ + 3sin²θ cos²θ(sin²θ + cos²θ) = 1
or,
sin^6θ + cos^6θ+ 3sin²θ cos²θ = 1
HOPE IT HELPS YOU ✌
Answered by
1
Answer:
ANSWER
sin
6
θ+cos
6
θ+3sin
2
θcos
2
θ
⇒LHS=(sin
2
θ)
3
+(cos
2
θ)
3
+3sin
2
θcos
2
θ
Using, [a
3
+b
3
=(a+b)
3
−3ab(a+b)]
⇒LHS=(sin
2
θ+cos
2
θ)
3
−3sin
2
θcos
2
θ(sin
2
θ+cos
2
θ)
3
+3sin
2
θcos
2
θ
⇒LHS=1−3sin
2
θcos
2
θ+3sin
2
θcos
2
θ=1=RHS
Similar questions
Science,
3 months ago
Math,
3 months ago
Social Sciences,
6 months ago
English,
6 months ago
Science,
1 year ago