Math, asked by nnoakwjsos, 6 months ago

Prove that sin^6 theta + cos^6 theta+ 3 sin^2 theta cos^2 theta = 1.

Answers

Answered by Anonymous
0

Answer:

Hello mate!

Here's the solution.

sin²θ + cos²θ = 1

Therefore (sin²θ + cos²θ)³ = 1

or

(sin²θ)³ + (cos²θ)³ + 3sin²θ cos²θ(sin²θ + cos²θ) = 1

or,

sin^6θ + cos^6θ+ 3sin²θ cos²θ = 1

HOPE IT HELPS YOU ✌

Answered by SweetCharm
1

 \huge \sf {\orange {\underline {\pink{\underline{Answer :-}}}}}

To prove that sin^6 theta + cos^6 theta+ 3 sin^2 theta cos^2 theta = 1.

\sf\underline\red{Solution:}

\rm\leadsto{sin²θ + cos²θ = 1}

\rm\leadsto{Therefore (sin²θ + cos²θ)³ = 1}

\rm{or ,}

\rm\leadsto{(sin²θ)³ + (cos²θ)³ +}

\rm\leadsto{ 3sin²θ cos²θ(sin²θ + cos²θ) = 1}

\rm{or,}

\rm\leadsto{sin^6θ + cos^6θ+ }

\rm\leadsto{3sin²θ cos²θ = 1}

{\huge{\underline{\small{\mathbb{\pink{HOPE\:HELPS\:UH :)}}}}}}

\red{\tt{sωєєтcнαям♡~}}

Similar questions