Math, asked by JEONJEONGU31, 7 months ago

Prove that Sin 600. Cos 330 + Cos 120 Sin 150
+ Sin 180 Cos 180 = -1

Answers

Answered by thedreamerloser3
6

Step-by-step explanation:

this is the solution.

As far as i know.

Attachments:
Answered by vinayks12121976
2

Given \:  \sin(600) . \cos(330)  +  \cos(120)  \sin(150)  =  - 1 \\ LHS =  \sin(3 \times 180 + 60) . \cos(2 \times 180 - 30)  +  \cos(180 - 60) . \sin(180 - 30)  \\  =  \sin(60)  \times  -  \cos(30)  +  \cos(60)  \times  -  \sin(30)  \\  =  \frac{ \sqrt{3} }{2}  \times  \frac{ -  \sqrt{3} }{2}  +  \frac{1}{2}  \times  \frac{ - 1}{2}  \\  =  \frac{ - 3}{4}  +  \frac{ - 1}{4}  \\   = \frac{ - 3 - 1}{4}  =  \frac{ - 4}{4}  =  - 1 = RHS

Similar questions
Math, 3 months ago
Math, 1 year ago