Math, asked by Nithinaakash, 1 year ago

Prove that
( Sin 7-sin 5)÷cos 7+cos 5=tan

Answers

Answered by betuutkarsh
2
RS agarwal pg 115 class 10
Answered by babundrachoubay123
2

Answer:

L.H.S = R.H.S

Step-by-step explanation:

In this question

We have been given that

\frac{sin 7 - sin 5}{cos 7 - cos 5} = tan 1

Let, L.H.S

\frac{sin 7 - sin 5}{cos 7 - cos 5}

{cos 7 - cos 5} firstly solve this equation

Using this formula

cos x - cos y = 2cos\frac{x + y}{2} cos\frac{x - y}{2}

Here, x = 7 and y = 5

Then, 2cos\frac{7 + 5}{2} cos\frac{7 - 5}{2}

2cos\frac{12}{2} cos\frac{2}{2}

2cos 6 cos 1

{sin 7 - sin 5} solve this equation

sin x - sin y = 2cos\frac{x + y}{2} sin\frac{x - y}{2}

Here, x = 7 and y = 5

2cos\frac{7 + 5}{2} sin\frac{7 - 5}{2}

2cos\frac{12}{2} sin\frac{2}{2}

2cos 6 sin 1

\frac{2cos 6 sin 1}{2cos 6 cos 1}

\frac{sin 1}{cos 1}

tan 1

R.H.S

Similar questions