Prove that sin 75°=(√6 √2)/4
Answers
Answered by
1
Answer:
We have to find Sin 75
Sin75 =Sin(45+30)
Always remember
sin(A+B) = SinA CosB + CosA SinB
take A =45, B=30
Sin(45+30) = Sin45 cos 30 + cos45 sin 30
Remember Sin 45 = cos 45 = 1/√2
cos30= √3/2
sin30= 1/2
sin(45+30)= (1/√2)( √3/2) + (1/√2)( 1/2)
= √3/2√2 + 1/2√2
= √3 +1)/2√2
Multiply by √2 in N and D
=√2( √3 +1)/2√2 √2
= √6 +√2)/4
Hence proved
#answerwithquality #BAL
Answered by
0
Answer:
To prove : \sin 75=\frac{\sqrt6+2}{4}
Proof :
Taking LHS,
LHS=\sin 75
LHS=\sin (30+45)
Using identity, \sin(A+B)=\sin A\cos B+\cos A\sin B
LHS=\sin 30\cos 45+\cos 30\sin 45
Substitute the trigonometric values,
LHS=\frac{1}{2}\times \frac{1}{\sqrt2}+\frac{\sqrt3}{2}\times \frac{1}{\sqrt2}
LHS=\frac{1}{2\sqrt2}+\frac{\sqrt3}{2\sqrt2}
LHS=\frac{1+\sqrt3}{2\sqrt2}
Multiply and divide by \sqrt{2}
LHS=\frac{1+\sqrt3}{2\sqrt2}\times \frac{\sqrt2}{\sqrt2}
LHS=\frac{\sqrt2+\sqrt6}{2\times 2}
LHS=\frac{\sqrt2+\sqrt6}{4}
LHS=RHS
Hence proved.
Similar questions