Math, asked by ritutkarsh120, 1 month ago

Prove that sin A/1-cos A=cosec A+ cot A​

Answers

Answered by bhanumanit
1

Step-by-step explanation:

= sin A/1-cos A

multiply and divide by 1 + cosA

therefore

sinA(1 + cosA)/(1+cosA)(1-cosA)

sinA(1 + cosA)/(1-cossquareA)

now sinsquareA = 1-cossquareA

therefore

sinA(1 + cosA)/(sinsquareA)

now, (1 + cosA)/(sinA)

1/ sinA= cosecA and cosA/sinA= cotA

therefore cosecA+ cotA

hence prove

Answered by mathdude500
6

\large\underline{\bold{Given \:Question - }}

 \sf \: Prove \:  that :  \: \dfrac{sinA}{1 - cosA}  = cosecA + cotA

\large\underline{\sf{Solution-}}

Identities Used :-

 \boxed{ \sf \: 1 -  {cos}^{2}A =  {sin}^{2}A}

 \boxed{ \sf \: \dfrac{1}{sinA}  = cosecA}

 \boxed{ \sf \: \dfrac{cosA}{sinA}  = cotA}

 \boxed{ \sf \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2}}

Let's solve the problem now!!

Consider,

\rm :\longmapsto\:\dfrac{sinA}{1 - cosA}

On multiply and divide by 1 + cosA, we get

 \sf \:  =  \:  \: \dfrac{sinA}{1 - cosA} \times \dfrac{1 + cosA}{1 + cosA}

 \sf \:  =  \:  \: \dfrac{sinA(1 + cosA)}{1 -  {cos}^{2} A}

 \sf \:  =  \:  \: \dfrac{sinA(1 + cosA)}{ {sin}^{2}A }

 \sf \:  =  \:  \: \dfrac{1 + cosA}{sinA}

 \sf \:  =  \:  \: \dfrac{1}{sinA}  + \dfrac{cosA}{sinA}

 \sf \:  =  \:  \: cosecA \:  +  \: cotA

{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions