Prove that sin A/1-cos A=cosec A+ cot A
Answers
Step-by-step explanation:
= sin A/1-cos A
multiply and divide by 1 + cosA
therefore
sinA(1 + cosA)/(1+cosA)(1-cosA)
sinA(1 + cosA)/(1-cossquareA)
now sinsquareA = 1-cossquareA
therefore
sinA(1 + cosA)/(sinsquareA)
now, (1 + cosA)/(sinA)
1/ sinA= cosecA and cosA/sinA= cotA
therefore cosecA+ cotA
hence prove
Identities Used :-
Let's solve the problem now!!
Consider,
On multiply and divide by 1 + cosA, we get
─━─━─━─━─━─━─━─━─━─━─━─━─
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1