Math, asked by Souffle21, 1 year ago

Prove that sin A ( 1+ tan A ) + cos A ( 1+ cot A ) = sec A + cosec A

Answers

Answered by Shravani83
9
sin A ( 1 + tan A) + cos θ ( 1 + cot A ) 
sinA ( 1 + sinA / cosA) + cosA ( 1 +cosA/sinA) 
sinA( cos A+ sinA ) / cosA + cosA( sin A + cos A ) / sin A 
( cos A+ sin A ) ( tan A + cot A ) 
( cos A + sin A ) ( sin² A+ cos²A ) / ( sin θ cos θ ) 
( cos A + sin A ) / ( sin A. cos A )    [.·. sin² A + cos²A= 1 ]
[ cos A / ( sin A. cos A ) ] + [ sinA/ ( sinA cosA ) ] 
1/sinA + 1/cosA 
cosecA + secA 
hence, Proved

Similar questions