prove that sin(a+b)sin(a-b)=sin^2a-sin^2b
Answers
Step-by-step explanation:
sin(A + B)sin(A − B) = sin² A – sin² B -
LHS
= sin(A + B)sin(A - B)
Recall: sin(a - b) = sin a cos ß- cos a sin And sin(a + 3) = sin a cos 3 + cos a sin 3
(sin A cos B+ cos A sin B)
x (sin A cos B - cos A sin B) = sin² A cos² B - cos² A sin² B
Recall: sin² a + cos² a = 1 From above, we can then assume correctly that:
sin² a = 1 cos² a AND -
- cos² a = 1 - sin² a
= sin² A (1 - sin² B) – sin² B(1 – sin² A)
sin² A - sin² A sin² B – sin² B + sin² A sin² B
= sin² A - sin² B
= RHS
To Prove
sin(A+B) * sin(A-B) = sin2 A – sin2 B
Proof
Let us start with LHS given
sin(A+B) * sin(A-B)
We know that formula for sin(A+B) = sin(A+B)=sin(A)cos(B)+cos(A)sin(B)
Also sin(−B)=−sin(B)
cos(−B)=cos(B), so
sin(A−B)=sin(A)cos(B)−cos(A)sin(B)
Therefore by substituting the values in given LHS equation that is sin(A+B)⋅sin(A−B) we get,
=(sinAcosB+cosAsinB)(sinAcosB−cosAsinB)
=(sinAcosB)2−(cosAsinB)2
Now will use the identity (a+b)(a−b)=a2 – b2 in the above equation
=sin2Acos2B−sin2Bcos2A
=sin2A(1−sin2B)−sin2B(1−sin2A)
Now we know that sin2θ+cos2θ=1 (By Pythagoras theorem)
=sin2A−sin2B−sin2A sin2B+sin2Bsin2A
=sin2A−sin2B
sin2A=sun2B