prove that sin A by secA + tanA -1 + cosA by cosecA+ cotA -1 = 1
Answers
Answered by
1
Step-by-step explanation:
L.H.S.
= sin A/(sec A + tan A – 1) + cos A/(cosec A + cot A – 1)
= [sin A/(1/cos A + sin A/cos A) – 1] + [cos A/(1/sin A + cos A/sin A) – 1]
= [sin A/(1 + sin A – cos A)/cos A] + [cos A/(1 + cos A – sin A)/sin A]
= sin A.cos A/1 + sin A – cos A + sin A.cos A/1 + cos A – sin A
= sin A. cos A (1 + cos A – sin A + 1 + sin A – cos A)/[1 + (sin A – cos A)][1 – (sin A – cos A)]
= 2 sin A.cos A/(1)2 – (sin A – cos A)2
= 2 sin A.cos A/(1 – (sin2 A + cos2 A – 2 sin A.cos A)
= 2 sin A.cos A/1 – 1 + 2 sin A.cos A
= 2/2 = 1 = R.H.S.
Hence proved.
Similar questions