Math, asked by SOM555JEET, 9 months ago

Prove that, (sin a + cos a) (tan a + cot a) = sec a + cosec a
who will answer i will mark his answer as brainliest answerrrrr.... ​

Answers

Answered by Anonymous
60

Given

Prove that (sinA + cosA) (tanA + cotA) = secA + cosecA

To Prove

(sinA + cosA) (tanA + cotA) = secA + cosecA

\rule{200}2

Proof

Taking L.H.S.

⇒ (sinA + cosA) (tanA + cotA)

We know that, tanA = sinA/cosA and cotA = cosA/sinA

⇒ (sinA + cosA) (sinA/cosA + cosA/sinA)

⇒ (sinA + cosA) [(sin²A + cos²A)/cosA.sinA]

Also, sin²A + cos²A = 1

⇒ (sinA + cosA) (1/cosA.sinA)

⇒ (sinA + cosA)/(cosA.sinA)

⇒ sinA/cosA.sinA + cosA/cosA.sinA

⇒ 1/cosA + 1/sinA

We know that, 1/cosA = secA and 1/sinA = cosecA

⇒ secA + cosecA

L.H.S. = R.H.S.

Hence, proved.

Answered by Anonymous
75

{\red{\underline{\huge{\mathtt{Question:-}}}}}

Prove that, (sin a + cos a) (tan a + cot a) = sec a + cosec a.

{\red{\underline{\huge{\mathtt{Solution:-}}}}}

{\purple{\bold{\huge{L.H.S}}}}

{\bold{(sin a + cos a)\: (tan a + cot a)}}

______________________________________

Write tan a = sin a/cos a

cot a = cos a/ sin a★

_______________________________________

{\bold{→(sin a + cos a)\: (\frac{sin\:a}{cos\:a}+\frac{cos\:a}{sin\:a})}}

{\bold{→(sin a + cos a)\: (\frac{sin^2a+cos^2a}{cos\:a.sin\:a})}}

______________________________________

We know sin²a + cos²a = 1★

_______________________________________

{\bold{→(sin a + cos a)\: \frac{1}{cos\:a.sin\:a}}}

{\bold{→\frac{sin\:a+cos:a}{cos\:a.sin\:a}}}

{\bold{→\frac{sin\:a}{cos\:a.sin\:a}+\frac{cos\:a}{cos\:a.sin\:a}}}

{\bold{→\frac{1}{cos\:a}+\frac{1}{sin\:a}}}

________________________________________

★We know 1/ cos a= sec a and 1/sin a= cosec a

_______________________________________

{\green{\bold{→sec\:a+cosec\:a}}}

L.H.S = R.H.S

Hence proved______!!

Similar questions