Prove that
(sin a + cosec a) ²+(Cos a + sec a) ²=7 + tan²a+cot²a
Answers
Answered by
8
Answer:
(sin a + cosec a) ²+(Cos a + sec a) ²=7 + tan²a+cot²a
Taking LHS
(sin a + cosec a) ²+(Cos a + sec a) ²
= sin²a + cosec²a + 2 sin a cosec a + cos²a + sec²a + 2 cos a sec a
= sin²a + cos²a + 2 sin a cosec a + 2 cos a sec a + cosec²a + sec²a
Now, sin²a + cos²a = 1,
= 1 + 2(sin a cosec a + cos a sec a) + cosec²a + sec²a
Now, cosec²a = 1 + cot²a and sec²a = 1 + tan²a
= 1 + 2( sin a × 1/sin a + cos a × 1/cos a) + 1 + cot²a + 1 + tan²a
= 1 + 2( 1+1) + 1 + cot²a +1 + tan²a
= 1 + 2(2) +2 + cot²a + tan²a
= 1 + 4 + 2 + cot²a + tan²a
= 7 + cot²a + tan²a
Similar questions