Prove that sin a + cosec a square + cos a + sec a square is equals to 7 + tan square a + cot square a
Answers
Answered by
6
Solution:
LHS = (sinA+cosecA)²+(cosA+secA)²
= sin²A+cosec²A+2sinAcosecA
+cos²A+sec²A+2cosAsecA
= (sin²A+cos²A)
+cosec²A+sec²A+2+2
***************************
since ,i) sinAcosecA=1
ii)cosAsecA=1
************************
= 1+1+cot²A+1+tan²A+4
**************************
Since , i) cosec²A = 1+tan²A,
ii) sec²A = 1+tan²A
iii) sin²A + cos²A = 1
*************************
= 7+tan²A+cot²A
= RHS
••••
Similar questions