prove that sin a . sin 2a .sin 4a = 1/4 sin 3a
Answers
Answered by
5
Answer:
this equation is not true
Step-by-step explanation:
sinA.sin2A.sin4A = (1/4)sin3A
this equation is not true
Let say A = 30°
SinA = Sin30° = 1/2
Sn2A = Sin60° = √3 /2
Sin4A = Sin120° = √3 /2
LHS = (1/2)(√3 /2)(√3 /2) = 3/8
Sin(3A) = Sin90° = 1
RHS = 1/4
=> LHS ≠ RHS
Another example A = 45°
SinA = Sin45° = 1/√2
Sn2A = Sin90° = 1
Sin4A = Sin180° = 0
LHS = 0
Sin(3A) = Sin135° = 1/√2
RHS = 1/4√2
=> LHS ≠ RHS
Another example A = 90°
SinA = Sin90° = 1
Sn2A = Sin180° = 0
Sin4A = Sin360° = 0
LHS = 0
Sin(3A) = Sin270° = -1
RHS = -1/4
=> LHS ≠ RHS
Similar questions