prove that sin( alpha + 30°) = cos alpha + sin(alpha - 30°)
Attachments:
Answers
Answered by
54
Hi...☺
Here is your answer...✌
To prove :
sin(α + 30°) = cosα + sin(α - 30°)
Proof :
RHS
= cosα + sin(α - 30°)
= cosα + sinα cos30° - cosα sin30°
= cosα + sinα cos30° - (cosα)/2
= sinα cos30° + (cosα)/2
= sinα cos30° + (cosα) × 1/2
= sinα cos30° + cosα sin30°
= sin(α + 30°) = LHS [ Proved ]
==================================
★ Identity used :
sin(A + B) = sinAcosB + cosAsinB
sin(A - B) = sinAcosB - cosAsinB
Here is your answer...✌
To prove :
sin(α + 30°) = cosα + sin(α - 30°)
Proof :
RHS
= cosα + sin(α - 30°)
= cosα + sinα cos30° - cosα sin30°
= cosα + sinα cos30° - (cosα)/2
= sinα cos30° + (cosα)/2
= sinα cos30° + (cosα) × 1/2
= sinα cos30° + cosα sin30°
= sin(α + 30°) = LHS [ Proved ]
==================================
★ Identity used :
sin(A + B) = sinAcosB + cosAsinB
sin(A - B) = sinAcosB - cosAsinB
Answered by
6
hope this helps and please mark my answer as brainliest
.......
.......
Attachments:
Similar questions
Art,
8 months ago
India Languages,
8 months ago
Math,
8 months ago
History,
1 year ago
Social Sciences,
1 year ago
Science,
1 year ago
Science,
1 year ago