Math, asked by Bhargav8281, 9 months ago

Prove that sinθ - cosθ + 1/(sinθ + cosθ -1) = 1/(secθ - tanθ)

Answers

Answered by MaIeficent
8

Step-by-step explanation:

To Prove:-

  •  \rm \dfrac{sin\theta - cos\theta + 1}{sin\theta +  cos\theta - 1}  =  \dfrac{1}{sec\theta - tan\theta}

Proof:-

\rm LHS =  \dfrac{sin\theta - cos\theta + 1}{sin\theta +  cos \theta- 1}

Dividing numerator and denominator with cosθ

\rm =  \dfrac{ \dfrac{sin \theta- cos \theta+ 1}{cos\theta} }{ \:  \:  \:  \:  \dfrac{ sin\theta +  cos \theta- 1 }{cos\theta}\:  \:  \:  \: }

\rm =  \dfrac{ \dfrac{sin \theta}{cos\theta}  -  \dfrac{cos\theta}{cos\theta}  +  \dfrac{1}{cos\theta} }{  \: \:  \:  \:  \dfrac{ sin\theta }{cos\theta} +  \dfrac{cos\theta}{cos\theta} -  \dfrac{1}{cos\theta}  \:  \:  }

\rm =   \dfrac{tan \theta - 1 + sec\theta}{tan \theta+ 1 - sec\theta}

\rm =   \dfrac{tan \theta+ sec \theta- 1}{tan\theta - sec\theta + 1}

Multiplying both the numerator and denominator with tanθ - secθ

\rm =   \dfrac{[ (tan \theta + sec\theta) - 1]tan \theta- sec \theta} {(tanθ - sec \theta+ 1)(tan\theta - sec\theta )}

\rm =   \dfrac{ [(tan \theta + sec\theta) (tan\theta- sec \theta)] - 1(tan\theta- sec\theta )} {(tan\theta - sec\theta+ 1)(tan\theta - sec\theta )}

\rm =   \dfrac{ tan ^{2} \theta -  sec^{2}\theta - (tan \theta- sec \theta)} {(tan\theta - sec\theta + 1)(tan\theta - sec \theta)}

\rm =   \dfrac{  - 1 - tan\theta +  sec\theta} {(tan \theta- sec\theta + 1)(tan \theta- sec \theta)}   \:  \:  \:  \:  \:  \:  \:   \:  \: \:  \bigg( \because sec ^{2}\theta= 1 + tan\theta \dashrightarrow tan^{2}\theta  - sec ^{2}\theta =  - 1 \bigg)

\rm =   \dfrac{  - (1  +  tan\theta  -   sec\theta)} {(tan\theta- sec \theta+ 1)(tan \theta- sec\theta )}

\rm =   \dfrac{  -  \:  \:  \cancel{(1  +  tan \theta -   sec\theta)}} { \cancel{(tan \theta- sec \theta+ 1)} \: (tan\theta - sec \theta)}

\rm =   \dfrac{  -  1} {  \: tan\theta- sec\theta }

\rm =   \dfrac{  1} {  \: sec\theta - tan \theta}    = RHS

LHS = RHS

Hence Proved

Similar questions