Prove that: (sinθ+cosecθ)2+ (cosθ+secθ)2= 7+tan2
θ+cot2
θ .
Answers
Answered by
43
Hi ,
Here I am using A instead of theta.
*****************************************
We know the trigonometric
identities ,
1 ) sin² A + cos² A = 1
2 ) sec² A = 1 + tan² A
3 ) cosec² A = 1 + cot² A
And
4 ) sinA cosecA = 1
5 ) cosA secA = 1
*******************************************
Now ,
LHS = (sinA+cosecA)² + (cosA+secA)²
= sin²A+cosec² A+2sinAcosecA+
cos² A + sec² A + 2cosAsecA
= (Sin²A + cos² A ) + 2 + 2 + cosec² A
+ Sec² A
= 1 + 2 + 2 + ( 1 + cot² A )+( 1 + tan²A )
= 7 + cot² A + tan² A
= RHS
I hope this helps you.
: )
Here I am using A instead of theta.
*****************************************
We know the trigonometric
identities ,
1 ) sin² A + cos² A = 1
2 ) sec² A = 1 + tan² A
3 ) cosec² A = 1 + cot² A
And
4 ) sinA cosecA = 1
5 ) cosA secA = 1
*******************************************
Now ,
LHS = (sinA+cosecA)² + (cosA+secA)²
= sin²A+cosec² A+2sinAcosecA+
cos² A + sec² A + 2cosAsecA
= (Sin²A + cos² A ) + 2 + 2 + cosec² A
+ Sec² A
= 1 + 2 + 2 + ( 1 + cot² A )+( 1 + tan²A )
= 7 + cot² A + tan² A
= RHS
I hope this helps you.
: )
Answered by
21
LHS :-
(sinθ + cosecθ)² + (cosθ+ secθ)²
Furthur,
Using Identity
= (sin²θ + cosec²θ + 2sinθcosecθ) + (cos²θ + sec²θ + 2cosθsecθ)
As we know that
= (sin²θ + cosec²θ + 2) + (cos²θ + sec²θ + 2)
Also,
= (sin²θ + cos²θ) + 4 + (cosec²θ + sec²θ)
= 1 + 4 + (1 + cot²θ) + (1 + tan²θ)
= (7 + tan²θ + cot²θ)
LHS = RHS
Similar questions