Math, asked by arnypreethi, 7 months ago

Prove that sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x

Answers

Answered by PharohX
4

Step-by-step explanation:

WE KNOW THAT

 \cos(x)  \cos(y)  +  \sin(x)  \sin(y)  =  \cos(x - y)  \\

 \sin(n + 1)x . \sin(n + 2) x  \:  \:  +  \:  \:  \cos(n + 1) x \cos(n +  2 ) x \\   \: by \:  \: rearrangement\\  = \cos(n + 1) x \cos(n +  2 ) x \:  \:  +  \:  \: \sin(n + 1)x . \sin(n + 2) x \\  \\  =  \cos((n + 1)x - (n + 2)x)  \\  \\  =  \cos(nx + x - nx - 2x)  \\  \\  =  \cos( - x)  \\  and \\  \:  \:  \cos( - x)  =  \cos(x)

Proved

Similar questions