prove that sin square A + cos square A is equal to 1
Answers
Answered by
2
Sin A=perpendicular/hypotenuse
Sin A=p/h; cos A =base(b)/hypotenuse (h).
Sin square A=p ^2/h^2
Here ^ denotes power is use
Cos square A=b^2/h^2
Sin ^2 A+cos^2 A= p^2+b^2/h^2
And p^2+b^2 =h^2
By Pythagoras theorem
So, sin ^2A+cos^2 A=h^2/h^2
Sin ^2 A+cos ^2 A=1
Answered by
0
HEY FRND
prove :-sin^2 A + cos ^2 A
sin^2 A + cos^2 A { •.• sin^2A + cos^2A =1}..
so, sin^2A + cos ^2A =1
Ans is 1.....HENCE PROVED ^_^
Similar questions