Math, asked by vmamatha038, 1 month ago

Prove that sin teta=sin3 teta/1+2 cos teta
and hence deduce the value of sin 15 degree​

Answers

Answered by sharanyalanka7
5

Answer:

Correct Question:-

Prove that \sin\theta = \dfrac{sin3\theta}{1+2cos2\theta} and deduce the value of  sin15\degree.

Solution :-

Taking R.H.S :-

\sf\dfrac{sin3\theta}{1+2cos2\theta}

\sf sin3\theta = 3sin\theta- 4sin^{3}\theta

\sf cos2\theta = 1- 2sin^{2}\theta.

Substituting values:-

\sf\dfrac{3sin\theta- 4sin^{3}\theta}{1 + 2(1- 2sin^{2}\theta}

= \sf\dfrac{3sin\theta- 4sin^{3}\theta}{1 + 2 - 4sin^{2}\theta}

= \sf\dfrac{sin\theta(3 - 4sin^{2}\theta}{3 - sin^{2}\theta}

= \sf sin\theta

Hence L.H.S = R.H.S

Value of \sf sin15\degree

\sf sin15\degree = \dfrac{sin3(15\degree)}{1 + 2cos2(15\degree)}

\sf sin15\degree = \dfrac{sin45\degree}{1 + 2cos30\degree}

\sf sin45\degree = \dfrac{1}{\sqrt{2}}

\sf cos30\degree = \dfrac{\sqrt{3}}{2}

Substituting values:-

\sf sin15\degree = \dfrac{\dfrac{1}{\sqrt{2}}}{1 + 2(\dfrac{\sqrt{3}}{2})}

= \sf\dfrac{1}{\sqrt{2}(1+\sqrt{3})}

= \sf\dfrac{1}{\sqrt{2} + \sqrt{6}}

Rationalising Denominater :-

 \frac{1}{ \sqrt{6} +  \sqrt{2}  } \times  \frac{ \sqrt{6} -  \sqrt{2}  }{ \sqrt{6} -  \sqrt{2}  }

 \frac{ \sqrt{6} -  \sqrt{2}  }{4}

 \sqrt{2} (\frac{ \sqrt{3} - 1 }{4})

 \frac{ \sqrt{3} - 1 }{2 \sqrt{2} }

\sf\therefore sin15\degree = \dfrac{\sqrt{3}-1}{2\sqrt{2}}

Similar questions