Math, asked by SidhuSaab3191, 11 months ago

Prove that (sin theta+1+cos theta) (sin theta-1+cos theta) sec theta cosec theta

Answers

Answered by puja9713
3

Answer:

I think your question is not all right

Step-by-step explanation:

hope it will be helpful

Attachments:
Answered by Anonymous
138

Correct Question :-

  • Prove that (sin theta+1+cos theta) (sin theta-1+cos theta) sec theta cosec theta = 2

Given :-

  • \mathsf{  (sin\theta + cos\theta + 1)(sin\theta + cos\theta - 1).({sec}\theta.co{sec}\theta)}=2

To Prove :-

  • Value of \mathsf{  (sin\theta + cos\theta + 1)(sin\theta + cos\theta - 1).({sec}\theta.co{sec}\theta)}= 2

Proof :-

\qquadL.H.S\\

\mathsf\pink{{  (sin\theta + cos\theta + 1)(sin\theta + cos\theta - 1).({sec}\theta.co{sec}\theta)}}\\

\qquad \sf\red{\boxed{\sf{(a + b)(a - b) = a² - b²}}}

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies [(sin\theta + cos\theta)^2 - (1)^2].[{sec}\theta.co{sec}\theta]}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies [sin^2\theta + cos^2\theta + 2.sin\theta.cos\theta - 1].[{sec}\theta.co{sec}\theta]}\\

\qquad\sf\red{\boxed{\sf{sin²θ + cos²θ = 1}}}

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies [1 + 2.sin\theta.cos\theta - 1].[{sec}\theta.co{sec}\theta]}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies [2.sin\theta.cos\theta].[{sec}\theta.co{sec}\theta]}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies [2.sin\theta.co{sec}\theta].[{cos}\theta.{sec}\theta]}\\

\qquad\;\;\textsf{ \red{\boxed{\mathsf{{sec}\theta = \dfrac{1}{cos\theta}}}}}\\

\qquad\;\;\textsf{\red{ \boxed{\mathsf{co{sec}\theta = \dfrac{1}{sin\theta}}}}}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies 2\bigg(\cancel{sin\theta} \times \dfrac{1}{\cancel{sin\theta}}\bigg).\bigg(\cancel{cos\theta} \times \dfrac{1}{\cancel{cos\theta}}\bigg)}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\:\pink{:\implies 2}}\\

\qquadR.H.S\\

\therefore\:\underline{\textsf{  \textbf{Proved..!}}}.\\

Similar questions