Math, asked by theultimate, 1 year ago

Prove that:
sin theta (1+tan theta )+cos theta (1+cot theta ) = sec theta + Cosec theta.​

Answers

Answered by BraɪnlyRoмan
12
 \huge \boxed{ \bf{Answer}}


 \bf{To \: prove \: \div \sin \theta \: (1 + tan \theta) + cos \theta(1 + cosec \theta)} = sec theta + Cosec theta


 \boxed{ \bf{Proof}}


L.H.S,

 = \sin \theta \: (1 + tan \theta) + cos \theta(1 + cosec \theta)

 = sin \theta(1 + \frac{sin \theta}{cos \theta} ) + cos \theta \: (1 + \frac{cos \theta}{sin \theta} )

 = sin \theta \: ( \frac{cos \theta + sin \theta}{cos \theta} ) + cos \theta( \frac{sin \theta + cos \theta}{sin \theta} )

 = (sin \theta \: + \: cos \theta)( \frac{ {sin}^{2} \theta + {cos}^{2} \theta}{cos \theta \: sin \theta} )

 = (\frac{sin \theta \: + \: cos \theta}{cos \theta \: sin \theta} )

 = \frac{sin \theta}{cos \theta \: sin \theta} + \frac{cos \theta}{cos \theta \: sin \theta}

 = sec \: \theta \: + cosec \: \theta

 = R.H.S


Hence proved.


 \boxed{ \bf{Used \: \: formulas}}

 \bf{tan \: \theta \: = \frac{sin \theta}{cos \theta} }

 \bf{cot \: \theta \: = \frac{cos \theta}{sin \theta} }

 \bf{ {sin}^{2} \theta \: + {cos}^{2} \theta \: = 1}
Answered by Anonymous
4

hey..

ua answer is in attachment

Attachments:
Similar questions