Math, asked by sap35, 1 year ago

y(1+x)dx+x(1+y)dy=0​

Answers

Answered by brunoconti
4

Answer:

Step-by-step explanation:

Attachments:

sap35: thankyou
Answered by erinna
3

The general solution is ye^y=\dfrac{c}{xe^x}.

Step-by-step explanation:

The given equation is

y(1+x)dx+x(1+y)dy=0

Separate the variables.

x(1+y)dy=-y(1+x)dx

\dfrac{(1+y)}{y}dy=-\dfrac{(1+x)}{x}dx

(\dfrac{1}{y}+1)dy=-(\dfrac{1}{x}+1)dx

Integrate both sides.

\int (\dfrac{1}{y}+1)dy=-\int (\dfrac{1}{x}+1)dx

\ln y+y=-(\ln x+x)+\lnc

\ln y+\n e^y=-(\ln x+\ln e^x)+\ln c\ln ye^y=\ln(\dfrac{c}{xe^x})

ye^y=\dfrac{c}{xe^x}

Therefore the general solution is ye^y=\dfrac{c}{xe^x}.

#Learn more

Y sin2x dx -(1+y² + cos²x) dy=0.​

https://brainly.in/question/12776508

Similar questions