Math, asked by Raviji5912, 1 year ago

prove that sin theta + cosec theta whole square + cos theta + sec theta whole square equals to 7 + tan square theta + cot square theta

Answers

Answered by bharathparasad577
2

Answer:

Concept:

Trigonometric Identities: There are three primary trigonometric ratios sin, cos, and tan. The three other trigonometric ratios sec, cosec, and cot in trigonometry are the reciprocals of sin, cos, and tan respectively.

Step-by-step explanation:

Given:

$$(\sin \theta+\csc \theta)^{2}+(\cos \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta$$

Find:

Prove  that   $$(\sin \theta+\csc \theta)^{2}+(\cos \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta$$

Solution:

$$\text { L.H.S. }= (\sin \theta+\csc \theta)^{2}+(\cos \theta+\sec \theta)^{2}$$

           $$= \sin ^{2} \theta+\csc^{2} \theta+2 \sin \theta \cdot \csc \theta+\cos ^{2} \theta+\sec ^{2} \theta+2 \cos \theta \cdot \sec \theta$$

            $$=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+1+\cot ^{2} \theta+2+1+\tan ^{2} \theta+2\\\\=1+6+\tan ^{2} \theta+\cot ^{2} \theta$$

            $$=  7+\tan ^{2} \theta+\cot ^{2} \theta$$

            = R.H.S

Hence Proved.

$$(\sin \theta+\csc \theta)^{2}+(\cos \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta$$

#SPJ3

Answered by kg324181
3

Step-by-step explanation:

hope u get it .................. ..............

Attachments:
Similar questions