Prove that sin theta / (cot theta + cosec theta) = 2 + [sin theta / (cot theta - cosec theta)]
Answers
Answered by
0
Step-by-step explanation:
*LHS*= sinθ/ cotθ + cosecθ = sinθ / (cosθ/ sinθ+ 1/sinθ)=
sin²θ/ (cosθ+1) = (1- cos²θ)/1+cosθ = (1-cosθ)(1+cosθ)/1+cosθ
= 1 - cosθ
*RHS* = 2 + sinθ/cotθ - cosecθ = 2 + sinθ/ (cosθ-1)/sinθ
= 2 + sin²θ/(cosθ -1) = 2 + (1+ cosθ)(1-cosθ)/-1×(1-cosθ)
= 2 -(1+ cosθ) = 1 - cosθ
Hence, LHS=RHS
Similar questions