Prove that sin theta divided by 1 cos theta+tan theta/1+cos theta=cot theta+chick+sec theta*cosec theta
Answers
Answered by
1
writing tanθ assinθcosθ and cotθ as cosθsinθ, we get
sinθcosθ1−cosθsinθ+cosθsinθ1−sinθcosθ
=sin2θcosθ⋅(sinθ−cosθ)+cos2θsinθ⋅(cosθ−sinθ) (how?)
=sin2θcosθ⋅(sinθ−cosθ)−cos2θsinθ⋅(sinθ−cosθ)
=1(sinθ−cosθ)(sin2θcosθ−cos2θsinθ)
=1(sinθ−cosθ)(sin3θ−cos3θsinθ⋅cosθ)
=sinθ−cosθsinθ−cosθ(sin2θ+sinθ⋅cosθ+cos2θ)sinθ⋅cosθ(how?)
=1⋅1+sinθ⋅cosθsinθ⋅cosθ (why?)
which is
1+secθ⋅cscθ
Similar questions