Math, asked by navalaram23, 10 months ago

prove that sin theta minus cos theta + 1 by sin theta + cos theta minus 1 is equal to 1 by secant theta minus tan theta ​

Answers

Answered by bigb69
6

Answer:

HI BUDDY

LHS:

 \frac{sin \alpha  - cos \alpha  + 1}{sin \alpha  +  \cos \alpha - 1  } \:  \\  \\ dividing \: numerator \: and \: denominator \: by \: cos \alpha  \\  \\  \frac{tan \alpha  - 1  + sec \alpha }{tan \alpha  + 1 - sec \alpha }   \\  \\  \frac{tan \alpha  + sec \alpha  - 1}{tan \alpha  + 1 - sec \alpha }  \\  \\  \frac{tan \alpha  + sec \alpha  - ( {sec}^{2} \alpha  -  {tan}^{2}  \alpha ) }{tan \alpha  + 1 - sec \alpha }  \:  \:  \:  \: ( {sec}^{2}  -  {tan}^{2}  = 1) \\  \\  \frac{sec \alpha  + tan \alpha  - ((sec \alpha + tan \alpha )(sec \alpha  - tan \alpha )) }{tan \alpha  + 1 - sec \alpha } \\  \\  \frac{sec \alpha  + tan \alpha (1 - (sec \alpha  - tan \alpha ))}{tan \alpha  + 1 - sec \alpha } \:  \:  \: taking \: sec \alpha  + tan \alpha  \: common  \\  \\  \frac{sec \alpha  + tan \alpha (tan \alpha  + 1 - sec \alpha )}{tan \alpha  + 1 -sec \alpha }  \\  \\ sec \alpha  + tan \alpha  -  -  -  -  -  -  -  -  - 1 \\  \\ now \: we \: know \: that \\  \\ 1 +  {tan}^{2}   \alpha  =  {sec}^{2}  \alpha  \\  \\  {sec}^{2}  \alpha  -  {tan}^{2}  \alpha  = 1 \\  \\ (sec \alpha  + tan \alpha )(sec \alpha  - tan \alpha ) = 1 \\  \\ sec \alpha  + tan \alpha  =  \frac{1}{sec \alpha  - tan \alpha }  -  -  -  -  -  -  -  2 \\  \\ from \: 1 \: and \: 2 \\  \\  \frac{sin \alpha  - cos \alpha   +  1}{sin \alpha  + cos \alpha  - 1}  =  \frac{1}{sec \alpha  - tan \alpha }  \\  \\ therefore \: lhs = rhs \\  \\ hence \: proved \\  \\ hope \: this \: helps \\  \\ please \: mark \: as \: brainliest

Similar questions