Math, asked by koushikch, 1 year ago

prove that sin theta minus cos theta + 1 by sin theta + cos theta minus one is equal to one by sec theta minus 10 theta using the identity sec squared theta is equal to one plus tan square theta

Answers

Answered by Anonymous
91
 <b>
Hey there !!


→ Prove that :-)


 \huge \bf{ \frac{ sin \theta - cos \theta + 1 }{ sin \theta + cos \theta - 1 } = \frac{1}{sec \theta - tan \theta } }


→ Solution :-)


 \boxed{ See \:  the  \: attachment.}



 \boxed  {    \large\mathbb{TRIGONOMETRY.}}



 \huge  \bf \underline{ \mathbb{LHS = RHS.}}




✔✔Hence, it is proved ✅✅.

____________________________________




 \huge \boxed{ \mathcal{THANKS}}




 \huge \bf{ \# \mathbb{B}e \mathbb{B}rainly.}
Attachments:
Answered by saltywhitehorse
25

Answer:

Step-by-step explanation:

Problem

\frac{sin\theta-cos\theta+1}{sin\theta+cos\theta-1} =\frac{1}{sec\theta-tan\theta}

Prove that RHS=LHS

RHS

\frac{sin\theta-cos\theta+1}{sin\theta+cos\theta-1}\\\\=\frac{\frac{sin\theta-cos\theta+1}{cos\theta}}{\frac{sin\theta+cos\theta-1}{cos\theta}}\\\\=\frac{\frac{sin\theta}{cos\theta}-1+\frac{1}{cos\theta}}{\frac{sin\theta}{cos\theta}+1-\frac{1}{cos\theta}}\\\\=\frac{tan\theta-1+sec\theta}{tan\theta+1-sec\theta}\\\\=\frac{sec\theta+tan\theta-1}{1-(sec\theta-tan\theta)}\\\\=\frac{sec\theta+tan\theta-1}{(sec^{2}\theta-tan^{2}\theta)-(sec\theta-tan\theta)}\text{ [we know that }sec^{2}\theta-tan^{2}\theta=1]

\\\\=\frac{sec\theta+tan\theta-1}{(sec\theta+tan\theta)(sec\theta-tan\theta)-(sec\theta-tan\theta)}\\\\=\frac{sec\theta+tan\theta-1}{(sec\theta-tan\theta)(sec\theta+tan\theta-1)}=\frac{1}{(sec\theta-tan\theta)}

RHS=LHS (proved)

Similar questions