Math, asked by sarukeshsenthil, 1 month ago

prove that sin theta + sin 5 theta + sin 9 theta + sin 13 theta /cos theta + cos 5 theta + cos 9 theta + cos 13 theta = tan7 theta​

Answers

Answered by sandy1816
1

 \frac{sin \theta + sin5 \theta + sin9 \theta + sin13 \theta}{cos \theta + cos5 \theta + cos9 \theta + cos13 \theta}  \\  \\  =  \frac{(sin13 \theta + sin \theta) + (sin 9\theta + sin5 \theta)}{(cos13 \theta + cos \theta) + (cos9 \theta + cos 5\theta)}  \\  \\  =  \frac{2sin \frac{14 \theta}{2}cos \frac{12 \theta}{2} + 2sin \frac{14 \theta}{2} cos \frac{4 \theta}{2}   }{2cos \frac{14 \theta}{2}cos \frac{12 \theta}{2}   + 2cos \frac{14 \theta}{2}cos \frac{4 \theta}{2}  }  \\  \\  =  \frac{sin7 \theta cos6 \theta + sin7 \theta cos2 \theta}{cos7 \theta cos6 \theta + cos7 \theta cos2 \theta}  \\  \\  =  \frac{sin7 \theta}{cos7 \theta}  \\  \\  = tan7 \theta

Similar questions