Math, asked by shradonki7tty5mandhi, 1 year ago

Prove that:sin theta/sin(90-theta)+ cos theta/ cos (90-theta)=sec theta cosec theta

Answers

Answered by Dhairyatopper
37
first to solve this question ,
keep in mind that,
sin (90 - theta)= cos theta
cos(90 - theta)= sin theta
so,
sin theta/sin(90-theta)+cos theta/ cos(90-theta)
= sin theta/ cos theta   +    cos theta/ sin theta
= (sin square theta + cos square theta)/ sin theta. cos theta
= 1/sin theta. cos theta
= cosec theta. sec theta

Answered by wifilethbridge
38

Answer:

To prove : \frac{sin \theta}{sin(90-\theta)}+\frac{cos \theta}{cos(90-\theta)}= sec \theta cosec \theta

Solution :

LHS =  \frac{sin \theta}{sin(90-\theta)}+\frac{cos \theta}{cos(90-\theta)}

Identity : sin (90-\theta ) = cos \theta , cos(90-\theta)=sin \theta

\frac{sin \theta}{cos\theta}+\frac{cos \theta}{sin\theta}

\frac{sin^2 \theta+cos^2\theta}{cos\theta \times sin\theta}

We know that Sin^2\theta +cos^2\theta = 1

\frac{1}{cos\theta \times sin\theta}

Identity : \frac{1}{cosA}=sec A , \frac{1}{sin A}=cosec A

So, sec\theta \times cosec \theta

Hence \frac{sin \theta}{sin(90-\theta)}+\frac{cos \theta}{cos(90-\theta)}= sec \theta cosec \theta

Similar questions