Prove that (sin titha +cosec titha)^2 +(cos titha +sec titha )^2 =7+tan^2 titha +cot ^2 titha
Answers
Answered by
6
Hey there !!
▶ Prove that :-
→ ( sin∅ + cosec∅ )² + ( cos∅ + sec∅ )² = ( 7 + tan²∅ + cot²∅ .
▶ Solution :-
We have,
LHS = ( sin∅ + cosec∅ )² + ( cos∅ + sec∅ )² .
= ( sin²∅ + cosec²∅ + 2sin∅ cosec∅ ) + ( cos²∅ + sec²∅ + 2cos∅ sec∅ ) .
= ( sin²∅ + cosec² + 2 ) + ( cos²∅ + sec²∅ + 2 ) .
[ °•° sin∅ cosec∅ = 1 and cos∅ sec∅ = 1 . ]
= sin²∅ + cosec² + 2 + cos²∅ + sec²∅ + 2 .
= ( sin²∅ + cos²∅ ) + 4 + ( cosec²∅ + sec²∅ ) .
= 1 + 4 + ( 1 + cot²∅ ) + ( 1 + tan²∅ ) .
= [ °•° sin²∅ + cos²∅ = 1, cosec²∅ = 1 + cot²∅ and sec²∅ = 1 + tan²∅ ] .
= 5 + 1 + cot²∅ + 1 + tan²∅ .
= 7 + tan²∅ + cot²∅ = RHS.
✔✔ Hence, it is proved ✅✅.
____________________________________
THANKS
#BeBrainly.
▶ Prove that :-
→ ( sin∅ + cosec∅ )² + ( cos∅ + sec∅ )² = ( 7 + tan²∅ + cot²∅ .
▶ Solution :-
We have,
LHS = ( sin∅ + cosec∅ )² + ( cos∅ + sec∅ )² .
= ( sin²∅ + cosec²∅ + 2sin∅ cosec∅ ) + ( cos²∅ + sec²∅ + 2cos∅ sec∅ ) .
= ( sin²∅ + cosec² + 2 ) + ( cos²∅ + sec²∅ + 2 ) .
[ °•° sin∅ cosec∅ = 1 and cos∅ sec∅ = 1 . ]
= sin²∅ + cosec² + 2 + cos²∅ + sec²∅ + 2 .
= ( sin²∅ + cos²∅ ) + 4 + ( cosec²∅ + sec²∅ ) .
= 1 + 4 + ( 1 + cot²∅ ) + ( 1 + tan²∅ ) .
= [ °•° sin²∅ + cos²∅ = 1, cosec²∅ = 1 + cot²∅ and sec²∅ = 1 + tan²∅ ] .
= 5 + 1 + cot²∅ + 1 + tan²∅ .
= 7 + tan²∅ + cot²∅ = RHS.
✔✔ Hence, it is proved ✅✅.
____________________________________
THANKS
#BeBrainly.
Answered by
9
Question;
(Sin∅ + Cosec∅)² + (Cos∅+ Sec∅)² = 7+ tan²∅+ Cot²∅)
(Sin²∅+ Cosec²∅ + 2.Sin∅.Cosec∅ )+(Cos²∅+Sec²∅+2Cos.Sec∅)
(Sin²∅+Cosec²∅+2)+(Cos²∅+Sec²∅+2)
Reason; Sin∅× Cosec∅ = 1 and Cos∅×Sec∅ =1
(Sin²∅+Cos²∅)+4+(Cosec²∅+Sec²∅)
1+4+ (1+Cot²∅)+(1+tan²∅)
1+4+1+1 +tan²∅+Cot²∅
7+tan²∅+Cot²∅
Hence, LHS = RHS
(Sin∅ + Cosec∅)² + (Cos∅+ Sec∅)² = 7+ tan²∅+ Cot²∅)
(Sin²∅+ Cosec²∅ + 2.Sin∅.Cosec∅ )+(Cos²∅+Sec²∅+2Cos.Sec∅)
(Sin²∅+Cosec²∅+2)+(Cos²∅+Sec²∅+2)
Reason; Sin∅× Cosec∅ = 1 and Cos∅×Sec∅ =1
(Sin²∅+Cos²∅)+4+(Cosec²∅+Sec²∅)
1+4+ (1+Cot²∅)+(1+tan²∅)
1+4+1+1 +tan²∅+Cot²∅
7+tan²∅+Cot²∅
Hence, LHS = RHS
Similar questions