Prove that :
sin(x+1)x cos(n-1)x - cos(x+1)x sin(n-1)x = sin²x
Answers
Answered by
0
Answer:
Taking L.H.S
we know that
coz (A- B) =coz a coz b+ sin A sin B
Here
A =(n+ 1)×
B=(n+ 2)×
Hence
sin(n+1)x sin(n+2)x+ coz(n+1)x coz(n+2)x
=coz[(n+1)-(n+2)x]
=coz [nx+ x -nx -2x]
=coz[nx- nx- x- 2x]
=coz(0-x)
=coz(-x)
=coz x. =(coz(-x)=coz x)
=R.H.S
Hence
L.H.S=R.H.S
Hence proved.
Similar questions