Prove that.
Sin x tan x / 1- cos x= 1+ sec x
Answers
Answered by
15
Hey there !!!!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can even prove it by using RHS
= 1+secx
= 1+1/cosx
= (cosx+1)/cosx
Multiplying and dividing with 1-cosx
= (1+cosx)(1-cosx)/cosx(1-cosx)
= (1-cos²x)/cosx(1-cosx)
But sin²x+cos²x=1
So 1-cos²x=sin²x
= sin²x/cosx(1-cosx)
= sinx*sinx/cosx(1-cosx)
= sinxtanx/(1-cosx)
LHS=RHS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hope this helped you.............
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can even prove it by using RHS
= 1+secx
= 1+1/cosx
= (cosx+1)/cosx
Multiplying and dividing with 1-cosx
= (1+cosx)(1-cosx)/cosx(1-cosx)
= (1-cos²x)/cosx(1-cosx)
But sin²x+cos²x=1
So 1-cos²x=sin²x
= sin²x/cosx(1-cosx)
= sinx*sinx/cosx(1-cosx)
= sinxtanx/(1-cosx)
LHS=RHS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hope this helped you.............
Answered by
5
Concept:
The trigonometry values are used to measure the angles and sides of a right-angle triangle. The other side of the representation of trigonometric values formulas are:
Tan θ = sin θ/cos θ
Cot θ = cos θ/sin θ
Sin θ = tan θ/sec θ
Cos θ = sin θ/tan θ
Sec θ = tan θ/sin θ
Cosec θ = sec θ/tan θ
Sin²x= 1- Cos²x
Given:
We have given the equation: Sin x tan x / 1- Cos x= 1+ sec x
Find:
We have to prove : Sin x tan x / 1- Cos x= 1+ sec x
Solution:
Given Equation: Sin x tan x / 1- Cos x
We know that: Sin²x= 1- Cos²x
Let's solve the equation:
LHS
Sin x tan x / 1 - Cos x
= Sin x Sin x / Cos x (1- Cos x)
= Sin²x / Cos x (1- Cos x)
= 1 - Cos² x / Cos x (1 - Cos x)
= ( 1 + Cos x) / Cos x
= 1 + Sec x
= RHS
LHS= RHS
Hence, Sin x tan x / 1- Cos x= 1+ sec x
#SPJ2
Similar questions