prove that sin(x+y)sin(x-y) + sin(y+z)sin(y-z) + sin(z+x)sin(z-x) = 0
Answers
Answered by
37
Let A = y-z, B= z-x and C= x-y, so that A+B+C=0
We know that,
Sin 2A + sin 2B + sin 2C
= 2 sin (A+B) Cos (A-B) + 2 sin C cos C
= -2 sin C cos(A-B) + 2 sinC cosC
= -2 sin C [cos (A-B)- cos C]
= -2 sin C [cos (A-B)-cos(A+B)]
= - 4 sin A sin B sin C ....(1)
Now sin x sin y sin(x − y)
=1/2[cos(x − y) − cos(x + y)] sin(x − y)
=1/2[cos(x − y) sin(x − y) − cos(x + y) sin (x − y)]
=1/4[2cos(x − y) sin (x − y) − 2cos(x + y) sin (x − y)]
=1/4[sin 2(x − y) − sin 2x + sin 2y] ...(2)
Similarly,
sin y sin z sin(y − z) =1/4[sin 2(y − z) − sin 2y + sin 2z]... (3)
sin z sin x sin(z − x) =1/4[sin 2(z − x) − sin 2z + sin 2x]...(4)
Adding (2), (3) and (4)
sin x sin y sin(x − y) + sin y sin z sin(y − z) + sin z sin x sin(z − x)
=1/4[sin 2A + sin 2B + sin 2C]
=1/4[−4 sin A sin B sin C ]
= −sin A sin B sin C ..................................(from (1)
⇒ sin x sin y sin(x − y) + sin y sin z sin(y − z) + sin z sin x sin(z − x) + sin A sin B sin C = 0
We know that,
Sin 2A + sin 2B + sin 2C
= 2 sin (A+B) Cos (A-B) + 2 sin C cos C
= -2 sin C cos(A-B) + 2 sinC cosC
= -2 sin C [cos (A-B)- cos C]
= -2 sin C [cos (A-B)-cos(A+B)]
= - 4 sin A sin B sin C ....(1)
Now sin x sin y sin(x − y)
=1/2[cos(x − y) − cos(x + y)] sin(x − y)
=1/2[cos(x − y) sin(x − y) − cos(x + y) sin (x − y)]
=1/4[2cos(x − y) sin (x − y) − 2cos(x + y) sin (x − y)]
=1/4[sin 2(x − y) − sin 2x + sin 2y] ...(2)
Similarly,
sin y sin z sin(y − z) =1/4[sin 2(y − z) − sin 2y + sin 2z]... (3)
sin z sin x sin(z − x) =1/4[sin 2(z − x) − sin 2z + sin 2x]...(4)
Adding (2), (3) and (4)
sin x sin y sin(x − y) + sin y sin z sin(y − z) + sin z sin x sin(z − x)
=1/4[sin 2A + sin 2B + sin 2C]
=1/4[−4 sin A sin B sin C ]
= −sin A sin B sin C ..................................(from (1)
⇒ sin x sin y sin(x − y) + sin y sin z sin(y − z) + sin z sin x sin(z − x) + sin A sin B sin C = 0
uneq95:
its so lengthy
Answered by
33
sin(x+y)sin(x-y) = 1/2 {2 sin(x+y)sin(x-y)}
= 1/2 { cos(x+y-x+y) - cos(x+y+x-y)}
= 1/2 { cos(2y) - cos(2x)}
Similarly,
sin(y+z)sin(y-z)= 1/2 { cos(2z) - cos(2y)}
sin(z+x)sin(z-x)= 1/2 { cos(2x) - cos(2x)}
Now, the LHS given in the question is just the sum of these.
Add these and it will come out to be zero as it is visible clearly.
= 1/2 { cos(x+y-x+y) - cos(x+y+x-y)}
= 1/2 { cos(2y) - cos(2x)}
Similarly,
sin(y+z)sin(y-z)= 1/2 { cos(2z) - cos(2y)}
sin(z+x)sin(z-x)= 1/2 { cos(2x) - cos(2x)}
Now, the LHS given in the question is just the sum of these.
Add these and it will come out to be zero as it is visible clearly.
Similar questions
Computer Science,
8 months ago
Math,
8 months ago
English,
1 year ago
Psychology,
1 year ago
Hindi,
1 year ago
Hindi,
1 year ago