Prove that Sin² A + cot ² A - 1 / cos² A = cot² A
Answers
Answered by
6
LHS
(sin²A + cot²A -1)/cos²A
= (sin²A/cos²A) + (cot²A/cos²A) - (1/cos²A)
= tan²A + cosec²A - sec²A
∵ 1+tan²A = sec²A
∴tan²A - sec²A = -1
so, tan²A + cosec²A - sec²A
= cosec²A -1
= cot²A = RHS
(sin²A + cot²A -1)/cos²A
= (sin²A/cos²A) + (cot²A/cos²A) - (1/cos²A)
= tan²A + cosec²A - sec²A
∵ 1+tan²A = sec²A
∴tan²A - sec²A = -1
so, tan²A + cosec²A - sec²A
= cosec²A -1
= cot²A = RHS
qais:
buddy, what u have written see again....(2/3)/3 = 2/9 and not 2
Similar questions