Math, asked by T0M, 11 months ago

Prove that

sin²θ tanθ +cos²θ cotθ + 2 sinθ cosθ = tan θ+ cotθ = secθ cosecθ.

please answer fast ​

Answers

Answered by Anonymous
14

 \huge{\boxed{\bf{\red{Solution:-}}}}

First member = sec ² θ tan θ + cos² θ + 2 sin θ

cos θ

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = \:  \:  \:   \: sin {}^{2}   \: \theta \frac{sin \:  \theta}{cos \:  \theta} + cos {}^{2}  \theta. \frac{cos  \: \theta}{sin \:  \theta} + 2 \: sin \:  \theta \: cos \:  \theta =  \frac{sin {}^{3}  \theta}{cos \:  \theta} +  \frac{cos {}^{3}  \theta}{sin \:  \theta} + 2 \: sin \:  \theta \: cos \:  \theta \\

 \sf \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  = \:  \:    \: \frac{sin {}^{4}  \theta + cos {}^{4}   \: \theta + 2 \: sin {}^{2}   \: \theta \: cos {}^{2}  \:  \theta}{sin \:  \theta \: cos \:  \theta} =  \frac{(sin {}^{2}   \:  \theta) {}^{2} + (cos {}^{2}  \:  \theta) {}^{2} + 2 \: sin {}^{2} \:  \theta \: cos  {}^{2}   \:  \theta}{sin \:  \theta \: cos \:  \theta} \\

  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \sf =  \:  \frac{(sin {}^{2} \theta  + cos {}^{2}  \:  \theta) {}^{2} }{sin \:  \theta \:cos \:\theta}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\

[ ∵ a²+b²+2ab = (a+b)²]

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf =   \:  \: \frac{1 {}^{2} }{sin \:  \theta \: cos \:  \theta}  =  \frac{1}{cos \:  \theta}. \frac{1}{sin \:  \theta} \\

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  \: sec \:  \theta \: cosec \:  \theta \:  = third \: member \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(1)

 \:  \:  \:  \:  \:  \sf \: Second \: member \:  = tan \:  \theta + cot \:  \theta

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  = \:  \:   \frac{sin \:  \theta}{cos \:  \theta} +  \frac{cos \:  \theta}{sin \:  \theta} =  \frac{sin {}^{2} \:   \theta + cos {}^{2}  \:  \theta}{sin \:  \theta \: cos \:  \theta} \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = \:   \frac{1}{ sin \:  \theta \: cos \:  \theta} =  \frac{1}{cos \:  \theta}. \frac{1}{sin \:  \theta} \\

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \:  \: sec \:  \theta \: cosec \:  \theta \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(2)

 \sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \:  \: Third \: member.

 \implies \:  \:  \:  \:  \sf \: From \: (1) \: and \: (2),  \: we \: get

 \sf \: sin {}^{2}  \:  \theta \: tan \:  \theta \:  +  \: cos {}^{2}  \:  \theta \: cot \:  \theta \:  + 2 \: sin \:  \theta \: cos \:  \theta = tan \:  \theta \:  + cot \:  \theta \:  =  sec \:  \theta \: cosec \:  \theta

Answered by Anonymous
55

\huge\star\frak{\underline{AnSwer:-}}

\underline{\bigstar\:\textsf{Given \: in \: question:-}}

\bullet Here, we are going to solve question in two parts and we can break this in three parts after every symbol of equal.

\bulletSo, according to this we have to prove , 1 = 2 and 2 =3,then, ultimately we will get 1 = 2 = 3.

i.e

s 1:

\normalsize\star\:\sf \red{sin^2\theta Tan\theta + cos^2\theta cot\theta + 2sin\theta cos\theta} = \orange{Tan\theta +cot\theta}

s 2:

\normalsize\star\:\sf \orange{Tan\theta + cos\theta} = \green{sec\theta. cosec\theta}

\underline{\bigstar\:\textsf{According \: to \: question:-}}

sʟɪɴɢ ғ s 1:

\normalsize\hookrightarrow\sf\ sin^2\theta Tan\theta + cos^2\theta cot\theta + 2sin\theta cos\theta = Tan\theta + cot\theta \\ \\ \normalsize\hookrightarrow\sf\ sin^2\theta Tan\theta + cos^2\theta cot\theta + sin\theta cos\theta + sin\theta cos\theta = Tan\theta + cot\theta \\ \\ \normalsize\hookrightarrow\sf\ sin^2\theta Tan\theta + sin\theta cos\theta + cos^2\theta cot\theta + sin\theta cos\theta = Tan\theta + cot\theta \\ \\ \normalsize\hookrightarrow\sf\  sin\theta(sin\theta Tan\theta + cos\theta) + cos\theta(cos\theta cot\theta + sin\theta) = Tan\theta + cot\theta

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{ Tan\theta = \frac{sin\theta}{cos\theta} \: and \: cot\theta = \frac{cos\theta}{sin\theta} }) }

\normalsize\hookrightarrow\sf\ sin\theta[sin\theta \times\ \frac{sin\theta}{cos\theta} + cos\theta] + cos\theta[cos\theta \times\ \frac{cos\theta}{sin\theta} + sin\theta] = Tan\theta + cot \theta \\ \\ \normalsize\hookrightarrow\sf\ sin\theta[\frac{sin^2\theta}{cos\theta} + cos\theta] + cos\theta[\frac{cos^2\theta}{sin\theta} + sin\theta] = Tan\theta + cot\theta \\ \\ \normalsize\hookrightarrow\sf\ sin\theta[\frac{sin^2\theta + cos^2\theta}{cos\theta}] + cos[\frac{cos^2\theta + sin^2\theta}{sin\theta}] = Tan\theta + sec\theta

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{ sin^2\theta  +  cos^2\theta = 1}) }

\normalsize\hookrightarrow\sf\ sin\theta[\frac{1}{cos\theta}] + cos\theta [\frac{1}{sin\theta}] = Tan\theta + cot\theta \\ \\ \normalsize\hookrightarrow\sf\frac{sin\theta}{cos\theta} + \frac{cos\theta}{sin\theta}  = Tan\theta + cot\theta \\ \\ \normalsize\hookrightarrow\sf\ Tan\theta + cot\theta = Tan\theta + cot\theta \\ \\ \normalsize\hookrightarrow\sf \purple{L.H.S \: = \: R.H.S}

sʟɪɴɢ ғ s 2 :

\normalsize\hookrightarrow\sf\ Tan\theta + cot\theta = sec\theta cosec\theta

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{ Tan\theta = \frac{sin\theta}{cos\theta} \: and \: cot\theta = \frac{cos\theta}{sin\theta} }) }

\normalsize\hookrightarrow\sf\frac{sin\theta}{cos\theta} + \frac{cos\theta}{sin\theta} = sec\theta cosec\theta \\ \\ \normalsize\hookrightarrow\sf\frac{sin^2\theta + cos^2\theta}{cos\theta sin\theta} = sec\theta cosec\theta

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{ sin^2\theta  + cos^2\theta = 1}) }

\normalsize\hookrightarrow\sf\frac{1}{sin\theta cos\theta} = sec\theta cosec\theta

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{sec\theta =  \frac{1}{cos\theta}  \: and \:  cosec\theta = \frac{1}{cos\theta}}) }

\normalsize\hookrightarrow\sf\ sec\theta cosec\theta = sec\theta cosec\theta

\normalsize\hookrightarrow\sf \purple{L.H.S \: = \: R.H.S}

Similar questions