Math, asked by vanita3722, 11 months ago

prove that (sin2A+cos2A) + (cos2A+sec2A) = 7+tan2A+cot2A

Answers

Answered by azadprem957
0

Step-by-step explanation:

bic main + nahi hoga. please check the question

Answered by lublana
1

Answer with Step-by-step explanation:

LHS

(sinA+cosecA)^2+(cosA+secA)^2

sin^2A+cosec^2A+2sinAcosecA+cos^2A+sec^2A+2cosAsecA

Using identity :(a+b)^2=a^2+b^2+2ab

sin^2A+1+cot^2A+2sinA\times \frac{1}{sinA}+cos^2A+1+tan^2A+2cosA\times \frac{1}{cosA}

Using formula:1+tan^2A=sec^2A,1+cosec^2A=cot^2A,cosecA=\frac{1}{sinA},secA=\frac{1}{cosA}

1+1+1+2+2+tan^2A+cot^2A

Using sin^2A+cos^2A=1

7+tan^2A+cot^2A

LHS=RHS

Hence, proved.

#Learns more:

https://brainly.in/question/2657716

Similar questions