Prove that sin²A cos²B-cos²A sin² B = sin²A-sin²B
Answers
Answered by
16
L.H.S=sin²A cos²B-cos²A sin²B
=sin²A(1-sin²B)- [(1-sin²A)sin²B]
=sin²A-sin²A sin²B-[sin²B- sin²A sin²B]
=sin²A-sin²A sin²B-sin²B+ sin²A sin²B
=sin²A-sin²B
=R.H.S
=sin²A(1-sin²B)- [(1-sin²A)sin²B]
=sin²A-sin²A sin²B-[sin²B- sin²A sin²B]
=sin²A-sin²A sin²B-sin²B+ sin²A sin²B
=sin²A-sin²B
=R.H.S
Answered by
6
, proved.
Step-by-step explanation:
To prove that, .
L.H.S. =
Using the trigonometric identity,
= 1
⇒ = 1 -
=
=
=
= L.H.S., proved.
Thus, , proved.
Similar questions