Prove that
(sin²A)/[cosA(sinA - cosA)] + (cos²A)/[sinA(cosA - sinA)]
= 1 + tanA + cotA
Answers
Prove that
Identities Used :-
Consider, LHS
Additional Information :-
Answer:
Prove that
\sf\: \dfrac{ {sin}^{2}A }{cosA(sinA - cosA)} + \dfrac{ {cos}^{2} A}{sinA(cosA - sinA)} = 1 + tanA + cotA
cosA(sinA−cosA)
sin
2
A
+
sinA(cosA−sinA)
cos
2
A
=1+tanA+cotA
\large\underline{\bold{Solution-}}
Solution−
Identities Used :-
1. \: \: \boxed{ \bf{ {x}^{3} - {y}^{3} = (x - y)( {x}^{2} + xy + {y}^{2} )}}1.
x
3
−y
3
=(x−y)(x
2
+xy+y
2
)
2. \: \: \boxed{ \bf{tanA = \dfrac{sinA}{cosA} }}2.
tanA=
cosA
sinA
3. \: \: \boxed{ \bf{cotA = \dfrac{cosA}{sinA} }}3.
cotA=
sinA
cosA
Consider, LHS
\sf\: \dfrac{ {sin}^{2}A }{cosA(sinA - cosA)} + \dfrac{ {cos}^{2} A}{sinA(cosA - sinA)}
cosA(sinA−cosA)
sin
2
A
+
sinA(cosA−sinA)
cos
2
A
\sf\: = \dfrac{ {sin}^{2}A }{cosA(sinA - cosA)} - \dfrac{ {cos}^{2} A}{sinA(sinA - cosA)}=
cosA(sinA−cosA)
sin
2
A
−
sinA(sinA−cosA)
cos
2
A
\sf\: =\dfrac{ {sin}^{3}A - {cos}^{3}A}{sinA \: cosA \: (sinA - cosA)}=
sinAcosA(sinA−cosA)
sin
3
A−cos
3
A
\sf\: = \: \dfrac{ \cancel{(sinA - cosA)} \: \: ( {sin}^{2}A + sinAcosA + {cos}^{2}A}{sinA \: cosA \: \: \: \cancel{(sinA - cosA)}}=
sinAcosA
(sinA−cosA)
(sinA−cosA)
(sin
2
A+sinAcosA+cos
2
A
\sf\: = \: \dfrac{ {sin}^{2}A \: + \: sinA \: cosA \: + \: {cos}^{2}A}{sinA \: cosA}=
sinAcosA
sin
2
A+sinAcosA+cos
2
A
\sf\: = \: \dfrac{ {sin}^{2} A}{sinAcosA} + \dfrac{sinAcosA}{sinAcosA} + \dfrac{ {cos}^{2}A }{sinAcosA}=
sinAcosA
sin
2
A
+
sinAcosA
sinAcosA
+
sinAcosA
cos
2
A
\sf\: = \: \dfrac{sinA}{cosA} + 1 + \dfrac{cosA}{sinA}=
cosA
sinA
+1+
sinA
cosA
\sf\: =tanA + 1 + cotA=tanA+1+cotA
\sf\: = \: 1 + tanA + cotA=1+tanA+cotA
\sf\: =RHS=RHS
\bf{Hence, \: Proved}Hence,Proved
Additional Information :-
1. \: \: \boxed{ \bf{cosecA \: = \: \dfrac{1}{sinA} }}1.
cosecA=
sinA
1
2. \: \: \boxed{ \bf{secA \: = \: \dfrac{1}{cosA} }}2.
secA=
cosA
1
3. \: \: \boxed{ \bf{ {sin}^{2}A + {cos}^{2}A = 1}}3.
sin
2
A+cos
2
A=1
4. \: \: \boxed{ \bf{ {cosec}^{2} A - {cot}^{2} A = 1}}4.
cosec
2
A−cot
2
A=1
5. \: \: \boxed{ \bf{ {sec}^{2}A - {tan}^{2} A = 1}}5.
sec
2
A−tan
2
A=1