Math, asked by yugmhaske000, 3 months ago

Prove that
(sin²A)/[cosA(sinA - cosA)] + (cos²A)/[sinA(cosA - sinA)]

= 1 + tanA + cotA

Answers

Answered by mathdude500
9

Prove that

 \sf\: \dfrac{ {sin}^{2}A }{cosA(sinA - cosA)}  + \dfrac{ {cos}^{2} A}{sinA(cosA - sinA)}  = 1 + tanA + cotA

\large\underline{\bold{Solution-}}

Identities Used :-

1. \:  \:  \boxed{ \bf{ {x}^{3}  -  {y}^{3}  = (x - y)( {x}^{2}  + xy +  {y}^{2} )}}

2. \:  \: \boxed{ \bf{tanA = \dfrac{sinA}{cosA} }}

3. \:  \: \boxed{ \bf{cotA = \dfrac{cosA}{sinA} }}

Consider, LHS

 \sf\: \dfrac{ {sin}^{2}A }{cosA(sinA - cosA)}  + \dfrac{ {cos}^{2} A}{sinA(cosA - sinA)}

 \sf\: =  \dfrac{ {sin}^{2}A }{cosA(sinA - cosA)}   -  \dfrac{ {cos}^{2} A}{sinA(sinA - cosA)}

 \sf\: =\dfrac{ {sin}^{3}A -  {cos}^{3}A}{sinA \: cosA \: (sinA - cosA)}

 \sf\: = \: \dfrac{ \cancel{(sinA - cosA)} \:  \: ( {sin}^{2}A + sinAcosA +  {cos}^{2}A}{sinA \: cosA \:  \:  \:  \cancel{(sinA - cosA)}}

 \sf\: = \: \dfrac{ {sin}^{2}A  \: +  \: sinA \: cosA \:  +  \:  {cos}^{2}A}{sinA \: cosA}

 \sf\: = \: \dfrac{ {sin}^{2} A}{sinAcosA}  + \dfrac{sinAcosA}{sinAcosA}  + \dfrac{ {cos}^{2}A }{sinAcosA}

 \sf\: = \: \dfrac{sinA}{cosA}  + 1 + \dfrac{cosA}{sinA}

 \sf\: =tanA + 1 + cotA

 \sf\: = \: 1 + tanA + cotA

 \sf\: =RHS

\bf{Hence, \:  Proved}

Additional Information :-

1. \:  \: \boxed{ \bf{cosecA \:  =  \: \dfrac{1}{sinA} }}

2. \:  \: \boxed{ \bf{secA \:  =  \: \dfrac{1}{cosA} }}

3. \:  \: \boxed{ \bf{ {sin}^{2}A +  {cos}^{2}A = 1}}

4. \:  \: \boxed{ \bf{ {cosec}^{2} A -  {cot}^{2} A = 1}}

5. \:  \: \boxed{ \bf{ {sec}^{2}A -  {tan}^{2} A = 1}}

Answered by Shivabhatt01
0

Answer:

Prove that

\sf\: \dfrac{ {sin}^{2}A }{cosA(sinA - cosA)} + \dfrac{ {cos}^{2} A}{sinA(cosA - sinA)} = 1 + tanA + cotA

cosA(sinA−cosA)

sin

2

A

+

sinA(cosA−sinA)

cos

2

A

=1+tanA+cotA

\large\underline{\bold{Solution-}}

Solution−

Identities Used :-

1. \: \: \boxed{ \bf{ {x}^{3} - {y}^{3} = (x - y)( {x}^{2} + xy + {y}^{2} )}}1.

x

3

−y

3

=(x−y)(x

2

+xy+y

2

)

2. \: \: \boxed{ \bf{tanA = \dfrac{sinA}{cosA} }}2.

tanA=

cosA

sinA

3. \: \: \boxed{ \bf{cotA = \dfrac{cosA}{sinA} }}3.

cotA=

sinA

cosA

Consider, LHS

\sf\: \dfrac{ {sin}^{2}A }{cosA(sinA - cosA)} + \dfrac{ {cos}^{2} A}{sinA(cosA - sinA)}

cosA(sinA−cosA)

sin

2

A

+

sinA(cosA−sinA)

cos

2

A

\sf\: = \dfrac{ {sin}^{2}A }{cosA(sinA - cosA)} - \dfrac{ {cos}^{2} A}{sinA(sinA - cosA)}=

cosA(sinA−cosA)

sin

2

A

sinA(sinA−cosA)

cos

2

A

\sf\: =\dfrac{ {sin}^{3}A - {cos}^{3}A}{sinA \: cosA \: (sinA - cosA)}=

sinAcosA(sinA−cosA)

sin

3

A−cos

3

A

\sf\: = \: \dfrac{ \cancel{(sinA - cosA)} \: \: ( {sin}^{2}A + sinAcosA + {cos}^{2}A}{sinA \: cosA \: \: \: \cancel{(sinA - cosA)}}=

sinAcosA

(sinA−cosA)

(sinA−cosA)

(sin

2

A+sinAcosA+cos

2

A

\sf\: = \: \dfrac{ {sin}^{2}A \: + \: sinA \: cosA \: + \: {cos}^{2}A}{sinA \: cosA}=

sinAcosA

sin

2

A+sinAcosA+cos

2

A

\sf\: = \: \dfrac{ {sin}^{2} A}{sinAcosA} + \dfrac{sinAcosA}{sinAcosA} + \dfrac{ {cos}^{2}A }{sinAcosA}=

sinAcosA

sin

2

A

+

sinAcosA

sinAcosA

+

sinAcosA

cos

2

A

\sf\: = \: \dfrac{sinA}{cosA} + 1 + \dfrac{cosA}{sinA}=

cosA

sinA

+1+

sinA

cosA

\sf\: =tanA + 1 + cotA=tanA+1+cotA

\sf\: = \: 1 + tanA + cotA=1+tanA+cotA

\sf\: =RHS=RHS

\bf{Hence, \: Proved}Hence,Proved

Additional Information :-

1. \: \: \boxed{ \bf{cosecA \: = \: \dfrac{1}{sinA} }}1.

cosecA=

sinA

1

2. \: \: \boxed{ \bf{secA \: = \: \dfrac{1}{cosA} }}2.

secA=

cosA

1

3. \: \: \boxed{ \bf{ {sin}^{2}A + {cos}^{2}A = 1}}3.

sin

2

A+cos

2

A=1

4. \: \: \boxed{ \bf{ {cosec}^{2} A - {cot}^{2} A = 1}}4.

cosec

2

A−cot

2

A=1

5. \: \: \boxed{ \bf{ {sec}^{2}A - {tan}^{2} A = 1}}5.

sec

2

A−tan

2

A=1

Similar questions