Prove that sin²x + cos²(x + π/6) + cos²(x - π/6) = 3/2
Answers
Answered by
2
Step-by-step explanation:
cos²x + cos²(x + π/3) + cos²(x - π/3)
= cos²x + (cosx cosπ/3 - sinx sinπ/3)² + (cosx cosπ/3 + sinx sinπ/3)²
= cos²x + (1/2 cosx - √3 /2 sinx)² + (1/2 cosx + √3/2 sinx)²
= cos²x + 1/4 cos²x + 3/4 sin²x - 2 * 1/2 *√3/2 cosx sinx + 1/4 cos²x + 3/4 sin²x + 2 * 1/2 *√3/2 cosx sinx
= cos²x + 1/2 cos²x + 3/2 sin²x
= 3/2 cos²x + 3/2 sin²x
= 3/2 (cos²x + sin²x)
=3/2
Hence proved
Similar questions