Math, asked by tarakantisundaram, 1 year ago

Prove that sin30 + cos60 by 1+ sin60 + cos30 = 1 by 2 ( root 3 - 1)

Answers

Answered by ihrishi
0

Step-by-step explanation:

 \frac{sin \: 30 \degree + cos \: 60 \degree}{1 + sin \: 60 \degree + cos \: 30 \degree}  =  \frac{1}{2}( \sqrt{3} - 1)  \\ \\ LHS = \frac{sin \: 30 \degree + cos \: 60 \degree}{1 + sin \: 60 \degree + cos \: 30 \degree} \\\\  \huge=\frac{ \frac{1}{2}  + \frac{1}{2} }{1 +  \frac{ \sqrt{3} }{2}  +  \frac{ \sqrt{3} }{2} }  \\ \\   \huge=\frac{ \frac{1 + 1}{2}   }{1 +  \frac{ \sqrt{3} +  \sqrt{3}  }{2}  } \\  \\   \huge=\frac{ \frac{2}{2}   }{1 +  \frac{2 \sqrt{3} }{2}  } \\  \\   \huge=  \frac{1}{1 +   \sqrt{3} }  \\  \\   \huge=  \frac{1}{1 +   \sqrt{3}} \times  \frac{1    -  \sqrt{3}}{1  - \sqrt{3}}  \\\\ \huge  =  \frac{1 -  \sqrt{3} }{ {1}^{2} -  { \sqrt{3} }^{2}  } \\ \\ \huge =  \frac{1 -  \sqrt{3} }{ 1-  3 }  \\\\ \huge =  \frac{1 -  \sqrt{3} }{ - 2 }   \\\\\huge=  \frac{ - ( \sqrt{3}  - 1)}{ - 2}\\  \\   \huge=  \frac{ \sqrt{3} - 1 }{2} \\ \\   \huge=  \frac{1}{2} ( \sqrt{3}  - 1) \\\\  \huge = RHS \\\\ \huge{ thus \: proved}

Similar questions