Math, asked by venombmgo, 1 month ago

prove that:

(sin3x+cos3x)/(sinx+cosx)+(sin3x-cos3x)/(sinx-cosx)=2​

Answers

Answered by mathdude500
15

Appropriate Question :-

Prove that :-

 \sf \: \dfrac{ {sin}^{3}x +  {cos}^{3}x}{sinx + cosx}  + \dfrac{ {sin}^{3} x -  {cos}^{3} x}{sinx - cosx}  = 2

Consider LHS

\rm :\longmapsto\: \sf \: \dfrac{ {sin}^{3}x +  {cos}^{3}x}{sinx + cosx}  + \dfrac{ {sin}^{3} x -  {cos}^{3} x}{sinx - cosx}

We know,

\red{ \boxed{ \sf{ \: {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} +  {y}^{2} - xy) \: }}}

and

\red{ \boxed{ \sf{ \: {x}^{3}  -   {y}^{3} = (x + y)( {x}^{2} +  {y}^{2} + xy)}}}

So, using these Identities, we get

\sf=\dfrac{\cancel{(sinx+cosx)}( {sin}^{2}x +  {cos}^{2}x-sinxcosx)}{\cancel{sinx + cosx}}+\dfrac{\cancel{(sinx -  cosx)}( {sin}^{2}x +  {cos}^{2}x + sinxcosx)}{\cancel{sinx -  cosx}}

\sf =( {sin}^{2}x +  {cos}^{2}x - sinxcosx) + ( {sin}^{2}x +  {cos}^{2}x + sinxcosx)

We know,

\red{ \boxed{ \sf{ \: {sin}^{2}x +  {cos}^{2}x = 1}}}

So, using this, we get

\sf   =1  - \cancel{sinxcosx} + 1 + \cancel{sinxcosx}

\sf \:  =  \: 2

Hence,

\rm :\longmapsto\:\red{ \boxed{ \sf{ \: \dfrac{ {sin}^{3}x +  {cos}^{3}x}{sinx + cosx}  + \dfrac{ {sin}^{3} x -  {cos}^{3} x}{sinx - cosx}  = 2}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions