Math, asked by alpeshg398, 22 days ago

prove that : sin48°sec42°+cos48°cosec42°=2​

Answers

Answered by ItzSofiya
2

Step-by-step explanation:

Given sin48

sec42

+cos48

csc42

we know that,

secθ=

cosθ

1

and cscθ=

sinθ

1

cos42

sin48

+

sin42

cos48

We have,

cos(90−θ)=sinθ, sin(90−θ)=cosθ

cos(90−48)

sin48

+

sin(90−48)

cos48

=

sin48

sin48

+

cos48

cos48

sin48

+

cos48

cos48

=1+1

=2

∴ sin48

sec42

+cos48

csc42

=2

hence proved

Answered by heijsk1
0
Given sin48
sec42
+cos48
csc42
we know that,
secθ=
cosθ
1
​and cscθ=
sinθ
1

cos42
sin48
+
sin42
cos48
We have,
cos(90−θ)=sinθ, sin(90−θ)=cosθ

cos(90−48)
sin48
+
sin(90−48)
cos48
=
sin48
sin48
+
cos48
cos48
=1+1
=2
∴ sin48
sec42
+cos48
csc42
=2

hence proved
Similar questions