Math, asked by sumeetsumeet327, 2 months ago

prove that : sin⁴A + cos⁴A/1-2sin²Acos²A = 1​

Answers

Answered by IshaPraveen2005
1

Answer:

Here's your answer. Hope it helps you.

Attachments:
Answered by Nihar1729
1

Answer:

       We \ have,\\\\To \ prove :\\\\ \frac{sin^4A + cos^4A}{1-2sin^2A\ cos^2A} =1\\\\L.H.S \\\\= \frac{(sin^2A+cos^2A)^2 -2 \ sin^2A\ cos^2A}{1 \ - \ 2 \ sin^2A \ cos^2A}\ \ \ \ \ \ \ \ \ \ [ \ a^2+b^2 = (a+b)^2-2ab\ ] \\\\= \frac{1^2 -2 \ sin^2A\ cos^2A }{1 \ - \ 2 \ sin^2A \ cos^2A}\ \ \ \ \ \ \ \ \ \ \ \  [sin^2A +cos^2A = 1]\\\\= 1 \ = R.H.S  \ \ (Proved)

                                                  Hope it helps

                                        please mark as brainliest

Similar questions