Math, asked by uniquebullet208, 11 months ago

prove that. Sin5A = 16Sin^5A - 20Sin^3A+5SinA​

Answers

Answered by sandy1816
49

Step-by-step explanation:

sin5A=sin(3A+2A)

= sin3Acos2A+cos3Asin2A

=(3sinA-4sin^3A)(1-2sin^A)+(4cos^3-3cosA)2sinAcosA

=3sinA-6sin^3A-4sin^3A+8sin^5A+ (4cos^2A-3)2sinAcos^2A

=3sinA-6sin^3A-4sin^3A+8sin^5A+ [4(1-sin^2A)-3]2sinA(1-sin^2A)

=3sinA-6sin^3A-4sin^3A+8sin^5A+ (4-4sin^2A-3)(2sinA-2sin^3A)

=3sinA-6sin^3A-4sin^3A+8sin^5A+ (1-sin^2A)(2sinA-2sin^3A)

=3sinA-10sin^3A+8sin^5A+2sinA- 2sin^3A-8sin^3A+8sin^5A

=5sinA-20sin^3A+16sin^5A

=RHS

Similar questions