Math, asked by sabzbiju, 3 months ago

Prove that sin6 θ + cos6 θ + 3sin2 θ cos2 θ = 1

Answers

Answered by mathdude500
2

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

 {sin}^{6} θ +  {cos}^{6} θ + 3 {sin}^{2} θ {cos}^{2} θ \times 1 \\   = {sin}^{6} θ +  {cos}^{6} θ + 3 {sin}^{2} θ {cos}^{2} θ ( {sin}^{2} θ +  {cos}^{2} θ) \\  =  { {(sin}^{2} θ)}^{3}  +  { {(cos}^{2}θ) }^{3}  + 3 {sin}^{2} θ {cos}^{2} θ ( {sin}^{2} θ +  {cos}^{2} θ) \\  =  {( {sin}^{2}θ \: + {cos}^{2}θ) }^{3}  \\  =  {1}^{3}  \\  = 1 \\ \large\bold\red{Hence  \: Proved } \\ \huge \fcolorbox{black}{cyan}{♛Hope it helps U♛}

Answered by suman8615
1

Answer:

answer is 1...........


sabzbiju: thanks mate that help so mmucchh
Similar questions