prove that sin6alpha+cos6alpha=1-3sin2alpha+3sin4alpha
Answers
Answered by
1
we have to prove that,
sin^6α + cos^6α = 1 - 3sin²α + 3sin⁴α
LHS = sin^6α + cos^6α
= (sin²α)³ + (cos²α)³
using algebraic identity,
- a³ + b³ = (a + b)(a² + b² - ab)
= (sin²α + cos²α)(sin⁴α + cos⁴α - sin²α.cos²α)
- we know, sin²α + cos²α = 1
= 1 × (sin⁴α + cos⁴α - sin²α.cos²α)
= sin⁴α + cos⁴α - sin²α.cos²α
= sin⁴α + (1 - sin²α)² - sin²α(1 - sin²α)
= sin⁴α + 1 + sin⁴α - 2sin²α - sin²α + sin⁴α
= 1 + 3sin⁴α - 3sin²α
= 1 - 3sin²α + 3sin⁴α = RHS
[hence proved ]
also read similar questions : Prove that sin² α + cos² (α + β) + 2 sin α sin β cos (α + β) is independent of α.
https://brainly.in/question/6964715
Eliminate α :
cot α + cos α = x
cot α - cos α = y
https://brainly.in/question/1768042
Similar questions