Prove that sin6x + sin4x - sin2x = 4cosx.sin2x.cos3x
Answers
Answered by
15
hey mate
note:answer attachment
i hopes its helps u.
please follow me !!✌✌
@abhi.
Attachments:
Answered by
1
sin6x + sin4x - sin2x = 4cosx.sin2x.cos3x
Step-by-step explanation:
Given that,
L.H.S. = sin6x + sin 4x -sin2x
So,
R.H.S. = 2sin{(6x+4x)/2}. cos{(6x-4x)/2} - sin2x
= 2sin5x.cosx - 2sinx.cosx
= 2cosx (sin5x-sinx)
= 2cosx.2cos{(5x+x)/2} sin{(5x-x)/2}
= 4cosx.sin2x.cos3x
Therefore,
sin6x + sin4x - sin2x = 4cosx.sin2x.cos3x
Learn more: Trigonometry
brainly.in/question/19205390
Similar questions