prove that sin70°cos10°-cos70°sin10°=√3/2
Answers
Answer:To Prove: sin70^0cos 10^0–cos70^0sin10^0
Step-by-step explanation:
We know,
sin(a-b)=sin a cos b - cos a sin b
Therefore,
=>sin70^0cos 10^0–cos70^0sin10^0 = sin(70-10)
=>sin70^0cos 10^0–cos70^0sin10^0 = sin 60
=>sin70^0cos 10^0–cos70^0sin10^0 = √3/2
L.H.S. = R.H.S.
Hence proved.
Given,
A trigonometric equation sin70°cos10°-cos70°sin10°=√3/2.
To Prove,
The value of sin70°cos10°-cos70°sin10°=√3/2.
Solution,
Using the trigonometric formula
Sin(A-B) = sinA.cosB-cosA.sinB
Now, the given equation is
sin70°cos10°-cos70°sin10°=√3/2
Takin L.H.S
sin70°cos10°-cos70°sin10°
Now, using the formula of sin(A-B)
sin(70-10) = sin70°cos10°-cos70°sin10°
sin(60) = sin70°cos10°-cos70°sin10°
sin(60) = √3/2 = R.H.S
R.H.S = L.H.S
Hence proved
#SPJ3