Math, asked by chennaitrain2019, 2 months ago

prove that sin73 cos 17 + cos73 sin17 = 1

Answers

Answered by Anonymous
1

Step-by-step explanation:

sin 73°cos17°+cos73°sin17°

sin 73°cos17°+cos73°sin17°= sin(73°+17°)

sin 73°cos17°+cos73°sin17°= sin(73°+17°)=sin90°

sin 73°cos17°+cos73°sin17°= sin(73°+17°)=sin90°=1

sin 73°cos17°+cos73°sin17°= sin(73°+17°)=sin90°=1mark me as a brainliest

Answered by user0888
4

Solution

L.H.S

\implies \sin73^{\circ}\cos17^{\circ}+\cos73^{\circ}\sin17^{\circ}

=\sin73^{\circ}\cos(90^{\circ}-73^{\circ})+\cos73^{\circ}\sin(90^{\circ}-73^{\circ})

=\sin73^{\circ}\cdot \sin73^{\circ}+\cos73^{\circ}\cdot \cos73^{\circ}

=(\sin73^{\circ})^{2}+(\cos73^{\circ})^{2}

=\boxed{1}

R.H.S

\implies\boxed{1}

So, L.H.S=R.H.S\ \blacksquare

More information

For more information please refer to the attachment.

  • P(x,y): Given point before translation.
  • P'(x,y): Given point after translation.
  • The blue line: The line of symmetry.

Periodic Functions

(Tip: Every revolution gives equal magnitude, \tan is a special case.)

  • \sin(2\pi n+\theta)=\sin\theta
  • \cos(2\pi n+\theta)=\cos\theta
  • \tan(\pi n+\theta)=\tan\theta

Negative Angles

(Tip: Affects y vertices only.)

  • \sin(-\theta)=-\sin\theta
  • \cos(-\theta)=\cos\theta
  • \tan(-\theta)=-\tan\theta

Supplementary Angles

(Tip: Affects x vertices only.)

  • \sin(\pi -\theta)=\sin\theta
  • \cos(\pi -\theta)=-\cos\theta
  • \tan(\pi-\theta)=-\tan\theta

Complementary Angles

(Tip: Symmetry against y=x)

  • \sin(\dfrac{\pi}{2} -\theta)=\cos\theta
  • \cos(\dfrac{\pi}{2} -\theta)=\sin\theta
  • \tan(\dfrac{\pi}{2} -\theta)=\dfrac{1}{\tan\theta}
Attachments:
Similar questions